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Highlights 
 

➢ Integration of advanced optimization algorithms with heating load prediction for energy-efficient building management. 

➢ Utilization of African Vultures Optimization Algorithm (AVOA) and Sand Cat Swarm Optimization (SCSO) with the Naïve 
Bayes (NB) model. 

➢ Focus on optimizing HVAC operations, equipment sizing, energy management, and cost reduction. 

➢ Significance of accurate heating load prediction for achieving energy efficiency, cost-effectiveness, and environmental 
sustainability in building operations. 

➢ Evaluation metrics such as R2, RMSE, MSE, WAPE, and NSE used to assess the predictive efficacy, highlighting the 
superiority of the NBSC model in real-world applicability and accuracy. 

 

Article Info   Abstract 

This study tackles the imperative of energy-efficient building management by marrying advanced 
optimization algorithms with heating load (HL) prediction within the realm of heating, ventilation, 
and air conditioning (HVAC) systems. Highlighting the pivotal role of HL prediction in optimizing 
HVAC operations, fostering energy efficiency, and realizing cost savings, this research pioneers 
innovative strategies. It introduces a fusion of the African Vultures Optimization Algorithm (AVOA) 
and the Sand Cat Swarm Optimization (SCSO) with the Naïve Bayes (NB) model, aiming to elevate 
heating load prediction accuracy and streamline HVAC system optimization. These algorithms are 
employed to improve HVAC system control, equipment sizing, energy management, and cost 
reduction. The significance of accurate HL prediction in achieving energy efficiency, cost-
effectiveness, and environmental sustainability in building operations is showcased. To gauge the 
predictive efficacy of the models, an array of performance metrics, including R2, RMSE, MSE, 
WAPE, and the NSE, were employed for assessment. These evaluations demonstrate that the NBSC 
model stands out as the most exceptional predictor in terms of real-world applicability and 

accuracy. It achieves an outstanding maximum 𝑅𝑡𝑟𝑎𝑖𝑛
2  value of 0.987, showcasing a high degree of 

explanatory power and exhibiting an impressively low 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 value of 1.166, signifying minimal 
prediction errors in comparison to other models. Additionally, the NBAV obtained a valuable result 
based on an R2 value of 0.978 and an RMSE value of 1.510, indicating the model's reliable results. 
This study did not only produce an accurate model. 
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HL Heating Load R2 Coefficient of Determination 
HVAC heating, ventilation, and air conditioning RMSE Root Mean Squared Error 
MSE Mean Squared Error SCSO Sand Cat Swarm Optimization 
NB Naïve Bayes WAPE Weighted Absolute Percentage Error 

 

 
Schematic presentation of the paper 

 

1. Introduction 
1.1. Background 

The emphasis on building energy efficiency research 

projects has increased noticeably during the last few years. 

This heightened interest can be traced back to the 

escalating apprehensions regarding the squandering of 

energy resources and the enduring adverse consequences it 

imposes on the natural world. Acknowledging the pivotal 

role that buildings assume in energy utilization and the 

generation of greenhouse gases, scholars have been 

energetically investigating strategies to augment the 

efficiency of buildings while curbing their ecological 

footprint [1]–[3]. Achieving energy conservation in 

buildings requires the development of diverse strategies for 

efficient energy management, with a crucial focus on 

accurately predicting energy consumption. This emphasis 

on precise prediction, which has gained significant 

attention recently, enables the creation of targeted and 

highly efficient energy-saving initiatives by closely 

monitoring building energy usage patterns. 

Moreover, accurate energy consumption prediction 

enhances the effectiveness of energy-saving measures and 

deepens understanding of the underlying dynamics within 

buildings, facilitating the development of customized 

approaches to optimize energy efficiency in various 

building types. This precision in forecasting energy usage is 

a foundational element for building a sustainable and 

energy-efficient environment [4]. innovative approaches 

include demand-side management techniques [5], 

strategies for locating and diagnosing faults [6], and 

intelligent control systems [7] largely on a thorough 

understanding of forecasting building energy use. To 

optimize energy use, reduce waste, and guarantee the 

smooth operation of building systems, these techniques use 

predictive insights. They detect prospects for prospective 

energy-saving measures and address operational 

shortcomings, It promotes energy efficiency and efficient 

building infrastructure operation [2]. According to the 

paper, Even little adjustments to the building energy 

consumption estimates can lead to significant energy use 

reductions [8]. Building managers and residents can take 

proactive measures to maximize energy use by making well-

informed decisions based on precise forecasts of energy use 

patterns. This may entail altering HVAC settings, 

improving lighting schedules, putting in place energy-

efficient machinery, and changing behavior to support 

energy-saving goals[9]. 
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An essential component of energy modeling is 

accurately projecting energy use within buildings, however, 

this approach frequently deviates from actual performance. 

Numerous studies have highlighted differences between 

these projections and actual energy usage, occasionally 

showing that real consumption can be significantly higher 

than initial projections, frequently by two or three times. 

Traditional energy models are suitable for initial 

evaluations but fall short in accounting for the many 

complexities since they rely on engineering calculations 

based on physical principles, and they have practical uses 

[10]–[12]. These limitations are successfully circumvented 

by the use of numerical simulation techniques to simulate 

building energy use by incorporating machine learning 

(ML) models into efforts to improve building energy 

efficiency. Building energy consumption can be predicted 

and optimized using artificial intelligence (AI) models, 

which generate precise projections and insightful data for 

effective energy management using historical data, real-

time sensor inputs, and ML algorithms [13]–[15]. 

 
1.2. Related work  

The science of predicting energy usage has advanced 

significantly over time. A variety of methods and 

procedures have been developed by academics and industry 

professionals with the specific goal of accurately forecasting 

energy consumption patterns [16]. These efforts have 

resulted in the creation of numerous tools and approaches 

intended to increase the precision of energy usage 

projections [17]–[21]. Gong et al. [22] utilized Support 

Vector Regression (𝑆𝑉𝑅), using the methods Multilayer 

Perceptron (𝑀𝐿𝑃), Random Forest (𝑅𝐹), and Light 

Gradient Boosted Machine (𝐿𝐺𝐵𝑀), Tianjin residential 

buildings' heating energy usage is forecasted. The findings 

of their study showed that the LGBM model fared better 

than the other models in terms of a number of evaluation 

parameters. In their scholarly investigation, Moradzadeh et 

al. [23] applied 𝑆𝑉𝑅 and 𝑀𝐿𝑃 models for multilayer 

perceptrons are used to forecast cooling and heating loads 

[24]. Notably, the 𝑀𝐿𝑃 model displayed outstanding 

performance, achieving the highest R-value of 0.9993 in 

forecasting Heating Load, whereas the SVR model 

showcased its excellence by attaining the highest R-value of 

0.9878 for predicting Cooling Load. Karijadi and Chou [25] 

introduced a novel hybrid approach for forecasting building 

energy consumption. Long Short-Term Memory 

(𝐿𝑆𝑇𝑀) and 𝑅𝐹 techniques were used in this method. Real-

world data was used to validate this method's efficacy and 

show how much better it performs than traditional 

benchmark techniques. Nebot and Mugica [26] concentrated 

on forecasting heating and cooling loads in residential 

structures. They used fuzzy inductive reasoning (𝐹𝐼𝑅) and 

adaptive neural fuzzy inference system (𝐴𝑁𝐹𝐼𝑆) in 

particular for this goal. They also contrasted thirteen 

machine learning techniques with these fuzzy approaches. 

The results showed that SVR performed better than the 

other techniques, along with the two fuzzy methods 

(𝐴𝑁𝐹𝐼𝑆 𝑎𝑛𝑑 𝐹𝐼𝑅). 𝑂𝑙𝑢 − 𝐴𝑗𝑎𝑦𝑖 et al. [27] studied the use of 

various ML methods to forecast the annual energy use of 

residential buildings, including 𝐴𝑁𝑁, decision trees (𝐷𝑇), 

𝑆𝑉𝑀, 𝐺𝐵𝑀, 𝐷𝑁𝑁, 𝑅𝐹, stacking, K closest neighbour (𝐾𝑁𝑁), 

and linear regression (𝐿𝑅). The results show that DNN is 

the best accurate forecast model for energy consumption at 

the early design phase. 

 
1.3. Objective of the study 

This research aimed to create a machine-learning 

model that could forecast Heating Load (𝐻𝐿) using 

information from trustworthy sources. The study used the 

Naïve Bayes (NB) technique to construct strong composite 

models. To forecast 𝐻𝐿 values, these composite models 

smoothly integrated the African Vultures Optimization 

Algorithm (AVOA) and Sand Cat Swarm Optimization 

(SCSO). Using a Naive Bayes model for predicting HL can 

be considered when simplicity, speed, and interpretability 

are essential, especially in situations where the naive 

independence assumption aligns reasonably well with the 

data. A comprehensive array of five evaluation criteria was 

utilized to measure the efficacy of these models. These 

criteria evaluated how well the model estimated HL, 

ensuring a comprehensive assessment of its accuracy and 

reliability. 
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Fig. 1. The current study's process 

 

2. Materials and Methodology 
2.1. Data gathering 

The current study involves categorizing data into eight 

specific factors: Relative Compactness (RC), Surface Area 

(SA), Wall Area (WA), Roof Area (RA), Overall Height 

(OH), Orientation (Or), Glazing Area (GA), and Glazing 

Area Distribution (GAD). At the same time, the primary 

focus is on predicting Heating Load (KW) values as the 

desired output parameter. The dataset has been divided 

into three parts to simplify the analysis process. Initially, 

the training phase comprises a significant 70% of the entire 

dataset and acts as the basis for developing and training the 

model. Following that, the validation phase, representing 

15% of the data, is used to fine-tune and verify the model's 

performance to ensure its applicability to different 

situations. Finally, the remaining 15% is allocated to the 

testing phase, where the model's overall efficacy and 

capacity to make precise predictions on new, unseen data 

are assessed. This partitioning enables a thorough 

evaluation of the model's performance across various 

aspects of the dataset. Table 1 provides a numerical 

presentation of the parameters used in building the model. 

This table offers a comprehensive summary of specific 

features, including mean values (M), maximum values 

(Max), standard deviation (St.), and minimum values 

(Min). It is important to stress that the Heating Load (HL) 

value is constrained within clearly defined limits. Its upper 

limit is firmly set at 43.1 KW, while its lower threshold is 

precisely determined at 6.01 KW, in strict accordance with 

the specifications of its output parameter.

Table 1. The statistical properties of the input variable of Heating 

Variables 
 Indicators 

Category Min Max Avg St. Dev. 

RC Input 0.62 0.98 0.764 0.106 

SA (m2) Input 514.5 808.5 671.70 88.086 

WA (m2) Input 245 416.5 318.5 43.63 

RA (m) Input 110.25 220.5 176.60 45.165 

OH (m) Input 3.5 7 5.25 1.751 

Or Input 2 5 3.5 1.118 

GA (%) Input 0 0.4 0.235 0.133 

GAD Input 0 5 2.81 1.55 

Heating (kW) Output 6.01 43.1 22.30 10.09 

 

The correlation between several input variables and 

the result in Fig. 2 using the statistical characteristics listed 

in Table 1, heating is represented. The associations between 

the heating power in kilowatts and the inputs (RC, SA, WA, 

RA, OH, Or, GA, and GAD) are displayed in the graph. 

Some inputs show larger connections with heating output, 

indicating significant influences on the generated heat, 

according to the analysis, which reveals noteworthy 

tendencies. Finding important factors influencing heating 

levels is made easier by comprehending these linkages. 
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Potential insights into optimizing heating systems are given 

by the visual representation of clear patterns or 

dependencies between particular input variables and the 

heating output.

 
Fig. 2. The correlation between inputs and outputs 

2.2. Naïve Bayes Regression (NB) 

One version of the Naive Bayes algorithm that can be 

applied to regression tasks is Naive Bayes regression [28]. 

𝑁𝐵 broadens the use of NB beyond classification problems 

to include continuous numerical value prediction. 

Addressing the task of predicting a numeric target value 𝑌 

is rooted in an instance 𝐸, which encompasses a collection 

of m attributes: 𝑋1, 𝑋2, ..., 𝑋𝑚. These characteristics can 

have two roles: nominal, meaning they indicate an array of 

unordered values, or numeric, meaning they are treated as 

natural numbers. Selecting 𝑌 to minimize forecast errors 

becomes possible when the probability density function 

𝑝(𝑌|𝐸) of the target value is known for all possible instances 

of 𝐸. But in most cases, 𝑝(𝑌|𝐸) is unknown, so estimation 

from available data is necessary. To handle this, 𝑁𝐵 

assumes attribute independence and applies Bayes' 

theorem. 𝑋1, 𝑋2, . . . , 𝑋𝑚 given Y, the target value. In line with 

the Bayes theorem: 

𝑝(𝑌|𝐸) =
𝑝(𝐸, 𝑌)

∫ 𝑝(𝐸, 𝑌)𝑑𝑌
=

𝑝(𝐸, 𝑌)𝑝(𝑌)

∫ 𝑝(𝐸|𝑌)𝑝(𝑌)𝑑𝑌
 (1) 

In this context, the probability density function (PDF) 

that describes instance 𝐸 for a given target value 𝑌 is 

represented by the likelihood 𝑝(𝐸|𝑌). Moreover, before any 

examples are observed, the prior 𝑝(𝑌) matches the target 

value's PDF. A fundamental tenet of 𝑁𝐵 is the assumption 

of attribute independence when the model is conditioned 

on the target value [29], [30]. Therefore, the formulation of 

Eq. (1) is as follows: 

𝑝(𝑌|𝐸) =
𝑝(𝑋1|𝑌)𝑝(𝑋2|𝑌)… 𝑝(𝑋𝑚|𝑌)𝑝(𝑌)

∫ 𝑝(𝑋1|𝑌)𝑝(𝑋2|𝑌)… 𝑝(𝑋𝑚|𝑌)𝑝(𝑌)𝑑𝑌
 (2) 

It becomes possible to estimate the individual PDFs 

𝑝(𝑋𝑖|𝑌) separately rather than estimating the PDFs 𝑝(𝐸|𝑌). 

The learning process is made much less complex by this 

division of 𝑝𝑑𝑓𝑠. The estimation of 𝑝(𝑋𝑖|𝑌) is generally 

more reliable than estimating 𝑝(𝐸|𝑌) because higher 

problem dimensionality requires more data for accurate 

estimates. 

 

2.2.1. Managing Numerical Features 



           

78 
 

Let's start by discussing how to estimate 𝑝(𝑋|𝑌) for 

numerical attributes 𝑋. In this case, it is assumed that these 

attributes have been normalized using the training 

dataset's range. In this case, a 𝑃𝐷𝐹 with two numerical 

variables is formed by 𝑝(𝑋|𝑌). This situation is brought 

about by: 

𝑃(𝑋|𝑌) =
𝑝(𝑋, 𝑌)

∫ 𝑝(𝑋, 𝑌)𝑑𝑋
 (3) 

A technique based on approximating the joint 

probability 𝑃 (𝑋;  𝑌) can be used to estimate the probability 

𝑃(𝑋|𝑌). It is theoretically possible to represent 𝑝 (𝑋;  𝑌) 

using two-dimensional 𝑃𝐷𝐹𝑠 estimated through various 

methods, such as mixture models. The kernel density 

estimator has been the option in our situation. 

�̂�(𝑋 = 𝑥, 𝑌 = 𝑦) =
1

𝑛ℎ𝑥ℎ𝑦
∑𝐾(

𝑥 − 𝑥1
ℎ𝑥

)𝐾 (
𝑦 − 𝑦1
ℎ𝑦

)

𝑛

𝑖=1

 (4) 

In this context, 𝑥𝑖 denotes the attribute value while 𝑦𝑖  

corresponds to the target value of training example 𝑖. 𝐾(. ) 
signifies a chosen kernel function, and ℎ𝑥 and ℎ𝑦 function 

as the kernel widths for 𝑋 and 𝑌. Should either 𝑥𝑖 or 𝑦𝑖  be 

missing, the example is not factored into the calculation. 

When the kernel function complies with specified 

smoothness attributes and the kernel widths are selected 

appropriately, this estimation generally approaches the 

true PDF. A commonly used option for 𝐾(. ) is the Gaussian 

kernel 𝐾(𝑡)  =  (2𝜋)−
1

2𝑒−
𝑡2

2 , and this is the kernel utilized in 
the experiments. Ideally, the kernel widths ℎ𝑥 and ℎ𝑦 

should be chosen to reduce the difference between the 

estimated PDFs 𝑝(𝑋;  𝑌) and the true PDFs 𝑝(𝑋;  𝑌). 

Calculating the expected cross-entropy between the two 

PDFs is one method for assessing this difference. It is 

possible to get an objective estimate of this by using leave-

one-out cross-validation [31].  

𝐶𝑉𝐶𝐸

= −
1

𝑛
∑log (

1

(𝑛 − 1)ℎ𝑋ℎ𝑦
∑ 𝑘(

𝑥𝑗 − 𝑥𝑖

ℎ𝑋
)𝐾 (

𝑦 − 𝑦1
ℎ𝑦

)

𝑛

𝑖=1,𝑖≠1

)

𝑛

𝑗=1

 
(5) 

Following this, ℎ𝑥  and ℎ𝑦 are defined as ℎ𝑋 = 𝑐𝑋/√𝑛 , 

and ℎ𝑌  =  𝑐𝑌/√𝑛. The values of 𝑐𝑋   and 𝑐𝑌 are chosen to 

optimize the computed cross-entropy. In the practical 

experiments, which undertake a grid search within the 

interval [0.4, 0.8] for both 𝑐𝑋 and 𝑐𝑌. For adjustments, the 

grid search uses a step size of 0.1. Different search 

parameter configurations were investigated, and there were 

not many noticeable variations in the results. This 

phenomenon has the following causes: 

∫ �̂� (𝑋, 𝑌)𝑑𝑥 =
1

 𝑛ℎ𝑦
∑𝐾(

𝑦 − 𝑦1
ℎ𝑦

)

𝑛

𝑖=1

 (6) 

All the terms required for estimating are available. 

�̂�(𝑋|𝑌) of 𝑝(𝑋|𝑌) for a numeric attribute 𝑋. 

 
2.3. African Vultures Optimization Algorithm 

(AVOA) 

The African vulture optimization algorithm was 

presented by [32]. To identify the most effective vultures in 

every category, the initial population's proposed solutions 

are evaluated for their appropriateness. The best solution is 

designated as the top-performing vulture for the initial and 

subsequent groups, serving as the optimal choice. It is 

essential to highlight that the fitness of all populations 

needs to be reassessed in every iteration. Additionally, the 

remaining solutions are determined in the following 

manner: 

𝐺(𝑖) = {
𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒𝑖  𝑖𝑓 ℎ𝑖 = 𝑎
𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒2 𝑖𝑓 ℎ𝑖 = 𝑏

 (7) 

𝑎 and 𝑏 are situated within the range of (0,1). A 

roulette wheel approach is employed to select a potential 

optimal solution. This technique offers a systematic way to 

identify the most suitable solution, and the process is 

delineated as follows: 

ℎ𝑖 =
𝑘𝑖

∑ 𝑘𝑖
𝑛
𝑖=1

 (8) 

If 𝑏 is less than 𝑎, employing the 𝐴𝑉𝑂𝐴 could increase 

degradation. Conversely, even when 𝑎 is less than 𝑏, the 

𝐴𝑉𝑂𝐴 might produce different outcomes. To progress from 

the exploration stage to the exploitation stage, Eq. (9) is 

employed: 

𝐾 = (2 × 𝑟𝑎𝑛𝑑1 + 1) × 𝑦 × (1 −
𝐼𝑡𝑒𝑟𝑖
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

) (9) 

𝐵 denotes the level of hunger. 𝐼𝑡𝑒𝑟 implies the 

occurrence of multiple iterations. 𝑟𝑎𝑛𝑑1 and 𝑦 represent 

random numbers generated within the range of 0 to 1. 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟  signifies an integer value that corresponds to the 

maximum number of iterations. If 𝐾 lies in the range of 

values greater than 1 but less than 1, the African vulture 

optimization algorithm initiates the search phase. 

Conversely, when 𝐾 is less than 1, the 𝐴𝑉𝑂𝐴 algorithm 

shifts to the exploitation phase, mirroring the actions of a 

vulture scavenging for nearby food.  

In the exploration phase of the 𝐴𝑉𝑂𝐴, the vulture 

employs two methods to explore different regions. If the 
random number generated by randh1is greater than or 

equal to the ℎ1 parameter, it utilizes Eq. (10)(a). 

Conversely, when the random number produced by  
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𝑟𝑎𝑛𝑑ℎ1is less than the ℎ1 parameter, it chooses Eq. (11). The 

vulture's movement in this phase can be described as 

follows: 

𝑆(𝑖 + 1) =

{
𝐺(𝑖) − 𝑄(𝑖) × K                                                               𝑖𝑓 ℎ1 ≥ 𝑟𝑎𝑛𝑑ℎ1 ,   (𝑎)

𝐺(𝑖) − 𝐾 + 𝑟𝑎𝑛𝑑2((𝑢𝑐 − 𝑙𝑐) × 𝑟𝑎𝑛𝑑3 + 𝑙𝑐)           𝑖𝑓 ℎ1 < 𝑟𝑎𝑛𝑑ℎ1 ,   (𝑏)
  (10) 

𝑄(𝑖) = |𝑋 × 𝐺(𝑖) − 𝑆(𝑖)| (11) 

𝑆(𝑖) shows the present vector indicating the vulture's 

position. 𝑆(𝑖 + 1) denotes the vector that represents the 

vulture's position in the next iteration. K represents the 

degree of satisfaction or contentment among the vultures. 

𝑢𝑐 𝑎𝑛𝑑 𝑙𝑐 refer to the upper and lower limits or boundaries 

of the variable, respectively. 𝑟𝑎𝑛𝑑 denotes a random 

number within the range of 0 to 1. 

𝑋 signifies the unpredictable or random movement 

undertaken by the leader vulture 

Boosting the element of randomness is accomplished 

by utilizing 𝑟𝑎𝑛𝑑2. This leads to increased unpredictability 

at the environmental level, promoting diversity and 

preserving unique characteristics across different domains. 

When 𝐾 drops below 1 in the AVOA algorithm, it shifts 

into an exploitation phase consisting of two segments, each 

incorporating two distinct procedures. The choice of which 

procedure to utilize in each segment is determined in a 

deterministic manner, relying on the parameters ℎ2 and ℎ3. 

Two distinct rotation flight procedures are implemented in 

the initial segment to avoid conflicts. Furthermore, 
ℎ2 determines the selection rate for each strategy; if 𝑟𝑎𝑛𝑑ℎ2 

is greater than or equal to ℎ2, it executes the stall and 

outbound strategy, while if the random number is less than 

the ℎ2 parameter, it selects the rotational flight process. 

𝑆(𝑖 + 1) =

{
𝑄(𝑖) × (𝐾 + 𝑟𝑎𝑛𝑑4) − 𝑐(𝑡)       𝑖𝑓 ℎ3 ≥ 𝑟𝑎𝑛𝑑h2   (𝑎)

𝐺(𝑖) − 𝑆(𝑖)                                     𝑖𝑓  ℎ3 < 𝑟𝑎𝑛𝑑ℎ2   (𝑏)
  

(12) 

𝑐(𝑡) = 𝐺(𝑖) − 𝑆(𝑖) (13) 

𝐺(𝑖) denotes the vector's location. 𝑟𝑎𝑛𝑑4 is a number 

generated randomly and falls between 0 and 1. This 

approach begins by determining the distance between the 

vulture and one of two vests using Eq. (11). Following that, 

a spiral equation is formulated among the vultures, and 

their movement is guided by the parameter B, as described 

in Eq. (9): 

𝐾 = 𝑆(𝑖) × (
𝑟𝑎𝑛𝑑5 × 𝐺(𝑖)

2𝜋
) × cos(ℎ(𝑖)) (14) 

𝑟𝑎𝑛𝑑5 signifies a number generated at random. When 

𝐾 falls below 0.5, the AVOA enters its second exploitation 
phase. If the random value generated by randh3 equals or 

surpasses the ℎ3 parameter, the vultures employ collection 

strategies involving training on different food sources. 
Should the random number produced by randh3  be less 

than the h3 parameter, alternative strategies are initiated as 

outlined in Eqs. (13) and (14): 

𝑈1 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)

−
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) × 𝑆(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) × 𝑆(𝑖)
2
× 𝐾 

(15) 

𝑈2 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)

−
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) × 𝑆(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) × 𝑆(𝑖)
2
× 𝐾 

(16) 

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) and 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) represent the 

best vultures in the first and second groups, respectively. In 

the final stage of the African vulture optimization 

algorithm, all vultures are gathered together following the 

procedure described in Eq. (17)(a). During this phase, 

conflicts and disagreements may occur among the vultures 

as they circle each other, as depicted by Eq. (17)(b). 

𝑆(𝑖 + 1)

= {

(𝑈1 + 𝑈2)

2
                                         𝑖𝑓 ℎ𝑎 ≥ 𝑟𝑎𝑛𝑑ℎ3    (𝑎)

𝐺(𝑖) − |𝑐(𝑡)| × 𝐾 × 𝐿(𝑐)            𝑖𝑓 ℎ𝑎 < 𝑟𝑎𝑛𝑑ℎ3    (𝑏)
 

(17) 

Levy Flight (𝐿) is incorporated to enhance the 

effectiveness of the African vulture optimization algorithm, 

as explained in Eq. (18). It is combined with Eq. (17)(b) to 

simulate the conflicts and skirmishes that may occur 

among the vultures during the algorithm's final phase. 

𝐿(𝑣) = 0.01 ×
𝑦 × 𝛿

|𝑤|1/𝑎
 (18) 

𝛿 = (
𝜏(1 + 𝑏) × sin (

𝜋𝑏
2
)

𝜏(1 + 2𝑏) × 𝑏 × 2 ×
(𝑏 − 1)
2

)

1/𝑏

 (19) 

𝑣 denotes the problem's dimensionality, indicating the 

number of variables or dimensions involved. 𝑏 is 

established as a constant, and it remains fixed at 1.5. 𝑦 

represents random numbers falling within the interval of 0 

to 1. The core steps of the African vulture optimization 

algorithm are detailed using pseudo-code in Algorithm 1. 

Fig. 3 shows the flowchart of the AVOA.

Algorithm 1: Pseudo-Code of AVOA Algorithm 

Inputs: The maximum number of iterations T and the population size N 

Outputs: Where the vulture is located and how fit it is 
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Initialize the random population ℎ𝑖 (𝑖 =  1,2, . . . , 𝑁) 

while (stopping condition is not met) do 

Calculate the fitness values of the vulture 

Set ℎBestVulture1 as the location of Vulture (First best location Best Vulture Category 1) 

Set ℎBestVulture2 as the location of Vulture (Second best location Best Vulture Category 2) 

for (each vulture (ℎ𝑖)) do 

Select 𝐺(𝑖) 

Update the K  

if (|𝐾|  ≥  1) then 

if (ℎ1  ≥  𝑟𝑎𝑛𝑑ℎ1) then 

Update the location of the vulture  

else 

Update the location of Vulture  

if (|𝐾|  <  1) then 

if (|𝐾|  ≥  0.5) then 

if (ℎ2  ≥  𝑟𝑎𝑛𝑑ℎ2) then 

Update the location of the vulture  

else 

Update the location of the vulture  

else 

if (ℎ3 ≥ 𝑟𝑎𝑛𝑑ℎ3)  then 

Update the location of the vulture  

else 

Update the location of the vulture  

Return hBestVulture1 

 
Fig. 3. The flowchart of AVOA 

 
2.4. Sand Cat Swarm Optimization (SCSO) 

The SCSO algorithm, detailed in [33], draws 

inspiration from the foraging behaviors of sand cats in 

desert habitats. These remarkable felines can detect low-

frequency sounds, enabling them to locate prey, whether it 

is above or below ground. The algorithm's central idea 
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revolves around pinpointing the optimal point within an 

exploration space, akin to prey in a sand cat's natural 

hunting context. To do this, the algorithm uses a search 

agent that moves steadily in the direction of the assumed 

position of the best value while continuously navigating the 

search space via periodic location updates. A prey search 

and assault mechanisms make up the two essential 

components of the SCSO algorithm, which is methodically 

organized. A mathematical equation that describes the 

population's search behavior serves as the basis for the prey 

search mechanism, which mimics the way by which sand 

cats look for prey in the wild. This equation mirrors the 

collective actions of sand cats as they scour their 

environment for potential targets, forming the algorithm's 

foundational approach to optimization and discovering the 

desired solution within the exploration space. 

�⃗�(𝑡 + 1) = 𝑟. �⃗�𝑏(𝑡) − 𝑟𝑎𝑛𝑑(0,1). �⃗�𝑐(𝑡) (20) 

�⃗� represents the position vector of the search agent. 𝑡 

signifies the current iteration's number. �⃗�𝑏(𝑡) represents 

the position of the best candidate at iteration 𝑡. �⃗�𝑐(𝑡) 

signifies the current position of the search agent at iteration 

𝑡. 𝑟 represents the range of sensitivity of sand cats to low-

frequency noise, and this sensitivity can be described as 

follows: 

𝑟 =  𝑟𝐺 × 𝑟𝑎𝑛𝑑(0,1) (21) 

𝑟𝐺  denotes the general sensitivity range, which 

decreases linearly from 2 to 0. This can be described as 

follows: 

𝑟𝐺 = 𝑠𝑀 − (
𝑠𝑀 × 𝑖𝑡𝑒𝑟𝑐
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

) (22) 

𝑖𝑡𝑒𝑟𝑐  represents the current iteration, and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  

represents the maximum number of iterations. 

Additionally, given that sand cats sense low frequencies of 

2 𝑘𝐻𝑧, the value of 𝑠𝑀 is set to 2. After the prey search phase, 

the SCSO algorithm starts the prey assault phase. The prey 

attack mechanism for the population of sand cats is as 

follows: 

�⃗�𝑚𝑑 = |𝑟𝑎𝑛𝑑(0,1). �⃗�𝑏(𝑡) − �⃗�𝑐(𝑡)| (23) 

�⃗�(𝑡 + 1) = �⃗�𝑏(𝑡) − 𝑟. �⃗�𝑏(𝑡). 𝑐𝑜𝑠(𝜃) (24) 

𝜃 represents a random angle ranging from 0 to 360 

degrees. As a result, the cosine function cos(θ) yields values 

within the range of −1 to 1. �⃗�𝑚𝑑 refers to the random 

position that is generated based on both the best position 

and the current position. Through this approach, every 

member of the population can move in distinct circular 

directions. Each sand cat selects a random angle, enabling 

them to steer clear of local optimal traps as they close in on 

the prey's location. The random angle mentioned in Eq. 

(24) plays a crucial role in influencing the hunting and 

search direction of the agent. 

The SCSO method uses an adaptive factor known to 

preserve equilibrium between the exploration and 

exploitation phases as 𝑟. This factor can be elucidated as 

follows: 

𝑅 = 2 × 𝑟𝐺 × 𝑟𝑎𝑛𝑑(0,1) − 𝑟𝐺  (25) 

𝑟𝐺  diminishes gradually from 2 to 0 in a linear fashion 

with the progression of iterations. The revised explanation 

of the sand cat's positions throughout both the exploration 

and exploitation phases can be stated as follows: 

�⃗�(𝑡 + 1)

= {
𝑟. (�⃗�𝑏(𝑡) − 𝑟𝑎𝑛𝑑(0,1). �⃗�𝑐(𝑡))               |𝑅| > 1

�⃗�𝑏(𝑡) − 𝑟. �⃗�𝑏(𝑡). 𝑐𝑜𝑠(𝜃)                         |𝑅| ≤ 1
 

(26) 

When 𝑅′𝑠 absolute value is less than or equal to 1, the 

SCSO algorithm's search agent assaults the intended 

victim. In cases where |𝑅| > 1, the search agent switches to 

a global search mode, exploring potential solutions across a 

wider range. It is worth noting that each sand cat possesses 

a distinct search radius during the exploration phase, 

thereby preventing the algorithm from getting trapped in 

local optimal solutions. 

Algorithm 2 is described in the pseudo-code [34], and 

Fig. 4 displays the flowchart.

Algorithm 2: Pseudo-Code of SCSO Algorithm 

Population initiation  

Do the fitness function calculation 

Initialize the r; 𝑟𝐺; R 

while (𝑡 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥) do  

for each agent do 

Get a random angle (0 ◦ ≤  𝜃 ≤  360 ◦)  

if (|𝑅| ≤ 1) then 

Update the position of the search agent  

else 

Update the search agent position  



           

82 
 

end if  

end for 

𝑡 = 𝑡 + 1 

end while 

 
Fig. 4. The flowchart of SCSO 

 
2.5. Performance evaluation methods 

Hybrid models undergo thorough scrutiny using 

diverse metrics, particularly focusing on their ability to 

precisely measure errors and correlations. These metrics 

serve as essential tools for evaluating hybrid models' 

effectiveness across various applications. They include 

Root Mean Squared Error (𝑅𝑀𝑆𝐸), Coefficient of 

Determination (𝑅2), Mean Squared Error (𝑀𝑆𝐸), Nash-

Sutcliffe Efficiency (𝑁𝑆𝐸), and Weighted Absolute 

Percentage Error (𝑊𝐴𝑃𝐸). These measures critically assess 

how well hybrid models perform in different scenarios, 

offering valuable insights into their accuracy, reliability, 

and predictive capacity. By leveraging these metrics, one 

gains a comprehensive understanding of hybrid models' 

performance, crucial for optimizing their application in 

real-world contexts. 

• Root Mean Squared Error 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑠𝑖 − 𝑝𝑖)

2

𝑁

𝑖=1

 
Lower is 

desirable 
(27) 

• Coefficient of Determination 
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𝑅2

=

(

 
∑ (𝑝𝑖 − �̅�)(𝑠𝑖 − �̅�)
𝑁
𝑖=1

√[∑ (𝑝𝑖 − �̅�)
2𝑁

𝑖=1 ][∑ (𝑠𝑖 − �̅�)
2𝑁

𝑖=1 ]
)

 

2

 
Higher is 

desirable 
(28) 

• Mean Squared Error 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑠𝑖 − 𝑝𝑖)

2

𝑁

𝑖=1

 
Lower is 

desirable 
(29) 

• Weighted Absolute Percentage Error 

𝑊𝐴𝑃𝐸 =
∑ |𝑠𝑖 − 𝑝𝑖|
𝑁
𝑖=1

∑ |𝑝𝑖|
𝑁
𝑖=1

 
Lower is 

desirable 
(30) 

• Nash-Sutcliffe Efficiency 

𝑁𝑆𝐸 = 1 −
∑ (𝑠𝑖 − 𝑝𝑖)

2𝑁
𝑖=1

∑ (𝑝𝑖 − �̅�)
2𝑁

𝑖=1

 
Lower is 

desirable 
(31) 

• 𝑁 correspond to the numbers associated with 

the samples. 

• 𝑠𝑖 represents the estimated value. 

• �̅� represents the mean of the estimated values. 

• 𝑝𝑖  refers to the experimental value,  

• �̅� shows the experimental amount's average. 

 

3. Investigate the convergence 
The convergence analysis, as indicated by RMSE, is 

visually depicted in Fig. 5 for these hybrid models over 150 

iterations. The x-axis tracks the number of iterations, while 

the y-axis illustrates their accuracy, presenting a 

comprehensive view of their performance trends. Notably, 

among the models considered, the NBSC hybrid model 

achieved the lowest RMSE of 0.9, hitting its best iteration 

count by the 120th iteration. Conversely, the NBAV hybrid 

model, identified by its blue color, emerged as a leader, 

showcasing a remarkable RMSE of 1.4. This outstanding 

precision highlights its efficacy in predicting heating. What 

sets the NBAV hybrid model apart goes beyond its 

accuracy; it efficiently reaches optimal convergence by the 

135th iteration. This unique characteristic underscores 

consistent lower RMSE and swift convergence, 

distinguishing it from the struggling NBSC model.

 
Fig. 5. The 3D wall convergence for the output hybrid models 

4. Results and discussion 
The results of this investigation have been intricately 

detailed in Table 2, providing a comprehensive numerical 

portrayal of the outcomes achieved through Hybrid 

Learning (HL). After an in-depth scrutiny of these findings, 

it becomes increasingly apparent that integrating 

optimization techniques (AVOA and SCSO) has 

significantly enhanced the Naive Bayes (NB) model's ability 

to make estimations. Adopting these optimization 

methodologies has yielded positive developments across a 

spectrum of performance metrics. These enhancements 

include a notable rise in the R2 values, which signify the 
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model's explanatory power, and a simultaneous reduction 

in error metrics, encompassing RMSE, MSE, NSE, and 

WAPE. These improvements collectively highlight the 

substantial impact of optimizer integration on the NB 

model's predictive capabilities and overall performance. 

• Coefficient of determination (R2): 

Based on the data in Table 2, a consistent pattern 

emerges where R2 values for all models consistently show 

higher values during the training phase compared to the 

validation and testing phases. This suggests the models 

were inadequately trained, leading to subpar performance 

in subsequent phases. Notably, the NBSC model excelled 

during the training phase, achieving the highest R2 value of 

0.987, signifying its status as the top-performing model. 

Conversely, the NB model lagged with an R2 value of 0.954, 

making it the least effective model in this study. These 

findings underscore the critical role of practical training in 

model performance and highlight the substantial 

performance gap between the best and worst-performing 

models. 

• Root Mean Squared Error (RMSE): 

Considering the results, it becomes clear that within 

the group of models assessed, the NBSC model 

demonstrated the lowest RMSE value (𝑅𝑀𝑆𝐸 = 1.166) 

during the training phase, solidifying its position as the 

most accurate model in terms of prediction. In contrast, the 

NB model, with an RMSE value of 4.501, was identified as 

the least effective among the models, indicating its 

relatively inferior predictive performance. 

• Mean Squared Error (MSE): 

When examining the MSE results, it is clear that the 

NBSC model excelled compared to the NB and NBAV 

models, as it exhibited lower MSE values. To be more 

specific, the NBSC model achieved the most favorable MSE 

value, registering at 1.359, while the NB model yielded the 

least favorable result with the highest MSE value of 20.263 

among all the models. This difference in MSE values 

underscores the superior predictive precision of the NBSC 

model when compared to the alternatives. 

• Nash-Sutcliffe Efficiency (NSE) 

Considering the NSE values, it becomes clear that the 

NBSC model demonstrated superior performance 

compared to the NB and NBAV models. The NSE values 

spanned from a minimum of 0.797 for the NB model to a 

maximum of 0.987 for the NBSC model among all the 

examined models. This fluctuation in NSE values highlights 

that the NB model exhibited a broader spectrum of 

uncertainty in its predictions in contrast to the NBSC and 

NBAV models, with the NBSC model being the most 

accurate among the three. 

• Weighted Absolute Percentage Error 

(WAPE): 

Upon reviewing the WAPE values, it becomes evident 

that, during the training phase, the NBSC model attained 

the most favorable WAPE value, registering at 0.043. This 

positions it as the top-performing model among all the 

models under consideration. Conversely, the NB model was 

identified as the least effective model, displaying the 

highest WAPE value of 0.156. This difference in WAPE 

values emphasizes the superior predictive precision of the 

NBSC model when compared to the relatively poorer 

performance of the NB model. 

To sum it up, when assessing all three models for 

estimating HL values and taking into account both 

evaluator ratings and error metrics, it becomes clear that 

the most favorable model is the one that combines NB with 

the SCSO algorithm, referred to as NBSC. This model 

stands out for its outstanding performance, boasting the 

lowest error value at 1.166 during the training phase. 

Moreover, it also achieved the highest R2 value of 0.987 

during the same training phase, surpassing the 

performance of all three individual components. 

Consequently, the NBSC model emerges as the optimal 

choice among the three models for estimating HL values.

 

Table 2. The result of developed models for NB 

Model Phase 
Index values 

RMSE R2 MSE WAPE NSE 

NB 

Train 3.859 0.967 14.894 0.139 0.855 

Validation 3.834 0.960 14.699 0.145 0.848 

Test 4.501 0.954 20.263 0.156 0.797 

All 3.958 0.964 15.669 0.142 0.846 

NBSC 

Train 1.166 0.987 1.359 0.043 0.987 

Validation 1.480 0.977 2.192 0.056 0.977 

Test 1.552 0.976 2.409 0.054 0.976 

All 1.281 0.984 1.641 0.046 0.984 

NBAV Train 1.510 0.978 2.280 0.056 0.978 
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Validation 1.925 0.962 3.705 0.072 0.962 

Test 1.850 0.966 3.421 0.067 0.966 

All 1.632 0.974 2.664 0.060 0.974 

 

Fig. 6 employs scatter plots to illustrate the correlation 

between predicted and observed values for HL, explicitly 

focusing on assessing RMSE and R2 metrics. RMSE, 

indicative of data point concentration, diminishes as 

accuracy improves, whereas R2 draws data points nearer to 

the central axis. Three models (NB, NBSC, and NBAV) were 

devised by integrating the NB model with two optimization 

techniques across the testing, validation, and training 

phases. Fig. 6 serves as a visual summary of the outcomes, 

vividly demonstrating the superior performance of the 

NBSC hybrid model, a fusion of the NB approach with the 

SCSO optimizer. This superiority is evidenced by the tight 

clustering of data points aligned with the central line. 

Conversely, the figures reveal that the NB single model 

performed the worst, as indicated by the abundance of data 

points outside the reference lines. 
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Fig. 6. The scatter plot for developed hybrid models 

Fig. 7 illustrates a comparison among three machine 

learning models regarding their performance in predicting 

HL for HVAC systems: NB, NBSC, and NBAV. Their 

performance is assessed using R2, RMSE, and NSE metrics. 

R2 gauges the extent to which the model explains variance 

in HL; a score of 1 signifies a perfect explanation, while 0 

suggests no explanation. RMSE measures the square root 

of the average squared difference between predicted and 

actual loads, with lower values indicating better fit. NSE 

compares prediction accuracy against a baseline model, 

with 1 indicating perfect prediction and 0 indicating no 

improvement over the baseline. The NBSC model surpasses 

the others across all metrics, boasting an R2 of 0.987, RMSE 

of 1.166, and NSE of 0.954. This underscores NBSC's status 

as the most accurate and dependable model for HVAC 

heating load prediction.
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Fig. 7. Comparison between models RMSE, R2, and NSE 

 

The error percentages for hybrid machine learning 

models are determined through analysis of Line and 

histogram plots in Fig. 8, showcasing a comparison among 

these models used in HVAC system heating load prediction. 

The hybrids considered are NBSC, NBAV, and NB, with 

error percentages calculated across training, validation, 

and test datasets. Fig. 8 depicts that the NBSC model 

exhibits the lowest error percentages across all three 

datasets. Specifically, it reaches a maximum error 

percentage of 19% for training, 17% for validation, and 15% 

for the test dataset. Meanwhile, the NBAV model 

demonstrates commendable performance, displaying 

maximum error percentages of 24% for training, 22% for 

validation, and 20% for the test dataset. In contrast, the NB 

model records the highest error percentages among the 

trio, peaking at 35% for training, 33% for validation, and 

31% for the test dataset.
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Fig. 8. The error percentage for the hybrid models is based on Line and histogram plots 

 

Fig. 9 provides a detailed graphic representation of the 

error distribution during the training, validation, and 

testing stages when predicting HL values using three 

different models. Importantly, during the training phase, 

the NB model experienced the highest errors, whereas the 

NBSC model experienced significantly fewer errors. After 

close examination, a recurring trend that favored the NBSC 

hybrid model in every stage was discovered. More 

specifically, in the training stage, the NB model showed 

errors in the interval of -30 to 25, demonstrating a wider 

range of deviations. On the other hand, the NBSC model, 

which was hailed as the best performer, demonstrated 

exceptional accuracy with errors mostly confined to the 

smaller range of -16 to 17. The NBSC model stands out 

among the three due to its concentrated error range, which 

highlights its superior predictive accuracy.
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Fig. 9. The box normal of errors among the developed models 

 

Fig. 10, depicted as a Taylor diagram, offers a 

comparative analysis of three distinct machine learning 

models employed in predicting heating loads of residential 

buildings: NB, NBSC, and NBAV. This diagram serves as a 

visual representation of these models' performance based 

on three pivotal metrics: correlation coefficient, standard 

deviation, and centered root mean squared error (RMSE). 

The correlation coefficient gauges the strength of the 

linear relationship between predicted and actual heating 

loads, while the standard deviation denotes the variability 

in predicted heating loads. Meanwhile, the centered RMSE 

provides insight into the average error between predicted 

and actual heating loads. Remarkably, the NBSC model 

emerges as the closest to the reference point within the 

Taylor diagram, signifying its superior overall performance. 

With a correlation coefficient of 0.987, a standard deviation 

of 1.166, and a centered RMSE of 0.954, the NBSC model 

showcases exceptional accuracy. Following closely, the 

NBAV model also exhibits favorable performance, closely 

trailing the reference point. It holds a correlation coefficient 

of 0.976, a standard deviation of 1.241, and a centered 

RMSE of 0.932. 

Conversely, the NB model significantly lags, 

positioned farthest from the reference point within the 

diagram, denoting its comparatively poorer overall 

performance. Evidenced by a correlation coefficient of 

0.962, a standard deviation of 1.36, and a centered RMSE 

of 0.907, the NB model showcases less accuracy compared 

to its counterparts. 

These results notably advocate for the NBSC model's 

position as the most accurate and reliable model for 

predicting heating loads within HVAC systems, reaffirming 

its superiority among the evaluated models. 

 
Fig. 10. The Taylor diagram of related models 

 

5. Conclusion 
The pursuit of robust and precise predictive models 

holds significant promise for efficiency gains and cost 

reduction in the case of Heating Load (HL) prediction. This 

research rested upon the Naïve Bayes (NB) foundation as 

the fundamental framework for constructing these 

predictive models. Two optimization algorithms, 

specifically the African Vultures Optimization Algorithm 

(AVOA) and Sand Cat Swarm Optimization (SCSO), were 

seamlessly integrated to enhance the model's precision and 

effectiveness. The research findings underscore the 

effective utilization of both optimization techniques in 
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developing predictive models for HL value estimation. The 

outcomes unambiguously demonstrate the NBSC model's 

outstanding precision compared to its counterparts. This is 

notably manifested in its achievement of the RMSE value 

(𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 1.166) and the highest coefficient of 

determination value (𝑅2𝑡𝑟𝑎𝑖𝑛 = 0.987). These results 

highlight the model's exceptional ability to estimate HL 

values accurately. Incorporating AVOA and SCSO 

optimization techniques within the unified NB model has 

yielded substantial enhancements in R-squared values, 

with increments of 1.13% and 2.07%, respectively. It is 

imperative to emphasize that the NB model exhibited the 

least favorable performance among all the models 

examined. This was evident due to its recording of the 

highest error value, specifically 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 = 4.501, and the 

lowest Coefficient of Determination (𝑅2𝑡𝑒𝑠𝑡 = 0.954). In 

summary, these metrics collectively indicate a diminished 

effectiveness of the NB model in accurately predicting HL 

values. Consequently, the NBSC model, an amalgamation 

of the NB model with the SCSO optimizer, emerges as an 

exceptional performer, showcasing remarkable predictive 

capabilities in stark contrast to the NB model's relatively 

suboptimal performance. While the study excels in 

accurately predicting heating load within HVAC systems 

using innovative algorithms, it has limitations. These 

include a narrow focus primarily on predictive accuracy, 

potential constraints in applying the models to diverse 

scenarios, reliance on specific algorithms without exploring 

alternatives, lack of extensive real-world validation, limited 

consideration of long-term model performance, and 

reliance on specific datasets. Future research could address 

these limitations for broader applicability and a more 

comprehensive understanding of energy-efficient building 

management. 
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